Calculation of Mappings Between One and n - dimensional Values Using the Hilbert
نویسنده
چکیده
This report reproduces and brie y discusses an algorithm proposed by Butz [2] for calculating a mapping between one-dimensional values and n-dimensional values regarded as being the coordinates of points lying on Hilbert Curves. It suggests some practical improvements to the algorithm and presents an algorithm for calculating the inverse of the mapping, from n-dimensional values to one-dimensional values.
منابع مشابه
Calculation of Mappings Between One and n-dimensional Values Using the Hilbert Space-filling Curve
This report reproduces and briefly discusses an algorithm proposed by Butz [2] for calculating a mapping between one-dimensional values and n-dimensional values regarded as being the coordinates of points lying on Hilbert Curves. It suggests some practical improvements to the algorithm and presents an algorithm for calculating the inverse of the mapping, from n-dimensional values to one-dimensi...
متن کاملCalculation of Mappings Between One andn - dimensional Values Using the HilbertSpace - lling Curve ?
This report reproduces and brieey discusses an algorithm proposed by Butz 2] for calculating a mapping between one-dimensional values and n-dimensional values regarded as being the coordinates of points lying on Hilbert Curves. It suggests some practical improvements to the algorithm and presents an algorithm for calculating the inverse of the mapping, from n-dimensional values to one-dimension...
متن کاملCalculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method
In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...
متن کاملA Common Fixed Point Theorem Using an Iterative Method
Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000